728x90
반응형
#include <stdio.h>
int main(void)
{
int score[10] = { 100, 90, 80, 82, 67, 88, 90, 95, 72, 71 };
int time[10] = { 5, 4, 3, 3, 2, 2, 2, 3, 4, 6 };
int size = sizeof(score) / sizeof(int);
int scoreSum = 0;
double scoreAvg;
// score avg
for (int i = 0; i < size; i++)
{
scoreSum += score[i];
}
scoreAvg = scoreSum / size;
printf("Score sum = %d\n", scoreSum); // 835
printf("Score average = %.2lf\n", scoreAvg); // 83.00
printf("\n");
// time avg
int timeSum = 0;
double timeAvg;
for (int i = 0; i < size; i++)
{
timeSum += time[i];
}
timeAvg = timeSum / size;
printf("Time sum = %d\n", timeSum);
printf("Time average = %.2lf\n", timeAvg);
double mse = 0;
for (int i = 0; i < size; i++)
{
mse += (score[i] - scoreAvg) * (score[i] - scoreAvg) / size;
}
printf("MSE = %.2lf\n", mse); // 108.70
return 0;
}
100: 289
90: 49
80: 9
82: 1
67: 256
88: 25
90: 49
95: 144
72: 121
71: 144
1,087 sum
#include <stdio.h>
int main(void)
{
int time[4] = {2, 4, 6, 8};
int score[4] = {81, 93, 91, 97};
double timeAvg;
int timeSum = 0;
double scoreAvg;
int scoreSum = 0;
int i;
// Time Average
for (i = 0; i < 4; i++)
{
timeSum += time[i];
timeAvg = timeSum / 4;
}
printf("공부시간 (x) 평균 : %.2lf\n", timeAvg);
// Score Average
for (i = 0; i < 4; i++)
{
scoreSum += score[i];
scoreAvg = scoreSum / 4;
}
printf("성적 (y) 평균 : %.2lf\n", scoreAvg);
double incline;
double aa = 0;
double mse = 0;
for (i = 0; i < 4; i++)
{
aa += (time[i] - timeAvg) * (score[i] - scoreAvg);
mse += (time[i] - timeAvg) * (time[i] - timeAvg);
}
incline = aa / mse;
printf("기울기 : %.2lf\n", incline);
// y 절편의 값 b = y 의 평균
double intercept;
intercept = scoreAvg - (timeAvg * incline);
printf("y의 절편의 값 = %2.lf\n", intercept);
// 예측값
int y;
int j;
for (i = 0; i < 4; i++)
{
for (j = 0; j < 10;)
{
y = incline * j + intercept;
j += 2;
}
printf("예측 값 : %lf\n", y);
}
return 0;
}
728x90
반응형
'Deep Learning' 카테고리의 다른 글
Deep Learning Basic Formula - 2input, 2output (epoch 1 ~ 200) (0) | 2022.08.24 |
---|---|
Deep Learning Basic Formula - 2input, 1output (epoch 1 ~ 200) (0) | 2022.08.23 |
Deep Learning Basic Formula - 1input, 1output (epoch 1 ~ 200) (0) | 2022.08.23 |
Deep Learning Library (0) | 2022.08.23 |
Back Propagagation (0) | 2022.08.23 |