728x90
반응형
import tensorflow as tf
import pandas as pd
import numpy as np
data = pd.read_csv('gpascore.csv')
data = data.dropna()
y = data['admit'].values
x = []
for i, rows in data.iterrows():
x.append([rows['gre'], rows['gpa'], rows['rank']])
model = tf.keras.models.Sequential([
tf.keras.layers.Dense(128, activation='sigmoid'),
tf.keras.layers.Dense(356, activation='sigmoid'),
tf.keras.layers.Dense(712, activation='sigmoid'),
tf.keras.layers.Dense(1, activation='sigmoid')
])
model.compile(optimizer='adam', loss='binary_crossentropy',
metrics=['accuracy'])
model.fit(np.array(x), np.array(y), epochs=1000)
# predict
predict_v = model.predict([[750, 3.70, 3], [400, 2.2, 1]])
print(predict_v)
728x90
반응형
'Deep Learning' 카테고리의 다른 글
Library_Pandas_2 (0) | 2022.09.14 |
---|---|
Library_Pandas_1 (0) | 2022.09.14 |
Implementing a Simple Neural Network Structure Using TensorFlow (0) | 2022.09.13 |
TensorFlow (0) | 2022.09.12 |
Numpy (0) | 2022.09.12 |